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ABSTRACT

Data from free turbulent jets both with and without swirl are used to assess the performance of the

pressure-strain model of Speziale, Sarkar and Gatski which is quadratic in the Reynolds stresses.

Comparative predictions are also obtained with the two versions of the Launder, Reece and Rodi

model which are linear in the same terms. All models are used as part of a complete second-order

closure based on the solution of differential transport equations for each non-zero component of

uiuj together with an equation for the scalar energy dissipation rate. For non-swirling jets, the

quadratic model underestimates the measured spreading rate of the plane jet but yields a better

prediction for the axisymmetric case without resolving the plane jet/round jet anomaly. For the

swirling axisymmetric jet, the same model accurately reproduces the effects of swirl on both the

mean flow and the turbulence structure in sharp contrast with the linear models which yield results

that are in serious error. The reasons for these differences are discussed.

*Research was supported by the National Aeronautics and Space Administration under NASA Contract No.

NAS1-19480 while the author was in residence at the Institute for Computer Applications in Science and Engineering

(ICASE), NASA Langley Research Center, Hampton, Virginia 23681-0001
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1 INTRODUCTION

Swirling flows are common in nature as well as in engineering practice (e.g. in tornados, gas-

turbine combustors, furnaces and jet mixers) where a tangential (swirl) velocity is often superim-

posed on an axially-directed flow to enhance the rate at which it spreads into and entrains from its

surroundings. The generic swirling flow (i.e., the simplest realization of that class which embodies

all the essential physics but none of the unnecessary geometric complexities) is that of a single

axisymmetric swirling jet discharged into infinite, stagnant surroundings. For small values of the

Swirl Number S (defined as the ratio of tangential to axial momentum fluxes), the adverse pressure

gradients set up by the decaying tangential velocity are insufficient to cause flow reversal and the

swirling jet becomes an example of a thin shear layer distorted by the imposition of an extra rate of

strain. Flows of this type provide ideal benchmark tests for turbulence closures since their behavior

is determined more by turbulent transport than by pressure effects and they can be simulated by

the inherently more accurate marching-integration methods.

The prediction of the free swirling jet has highlighted defects in nearly all current closure mod-

els. The sensitivity of the turbulence in a thin shear layer to streamline curvature is not captured

by eddy-viscosity models which utilize the Boussinesq linear stress-strain relationship. This is espe-

ciai]y true for swirling jets where the streamlines follow helical paths. Ad-hoc corrections to various

two-equation models have been reported in the literature (e.g. Rodi 1979 who modified the k-e

model), but these modifications rarely perform well in flows other than those which were used in

their calibration. Adoption of more refined non-linear relationships such as that of Speziale (1987)

are unlikely to lead to drastically improved predictions since they too involve a scalar eddy-viscosity

while experiments show this quantity to be highly anisotropic. Second-order closure models, how-

ever, are known to reproduce the effects of two-dimensional (longitudinal) streamline curvature

quite accurately (Irwin and Arnot-Smith 1975, Gibson et al. 1981) and are therefore potentially

more suited for swirling flows. The first attempt at the prediction of the free swirling jet with a

model of this kind appears to be that of Launder and Morse (1979). Those workers employed the

more complete of the two models for the pressure-strain correlation proposed by Launder, Reece

and Rodi (1975) (hereafter LRR1) and found that their predictions of the swirling jet experiments

of Morse (1980) produced predominantly negative values for the shear-stress component _-_ while

the data showed this quantity to be largely positive. This component contributes to the rate of

production of _-_ (the shear stress componexit which governs the radial transport of axial momen-

tum) which, as a result, was also underestimated by the predictions. Not surprising, therefore,

Launder and Morse reported that compared to a jet without swirl, the "numerical solutions display

a reduced rate of spread in contrast to the strong augmentation found in practice." Launder and

Morse identified the source of this erroneous result as being due to the mean-strain contribution

to the pressure-strain correlation model and demonstrated that improved predictions can be ob-

tained by reducing these terms in the _-_ and _ equations by 40%. Younis (1984) found that

the alternative pressure-strain model of Launder et al. (1975) (sometimes called the IP model but

hereafter referred to as LRR2) suffered the same defects as its more complicated counterpart but

that the model can be sensitized to swirl by treating the non-gradient terms that arise from the

transformation of the convective terms into cylindrical coordinates as 'production' and including

these in the pressure-strain model. This treatment renders the model dependent on the choice of

the coordinate system and cannot therefore be recommended for general applications. Gibson and



Younis(1986)obtained satisfactory predictions with the coordinate-invariant form of the LRR2

model by reducing the relative importance of the mean-strain contribution. This was achieved by

halving the value of the coefficient C2, and then using well-established criteria to re-optimize the

remaining coefficients. Thus, for example, the value of C1, the coefficient multiplying the Rotta

return-to-isotropy term, was increased from 1.8 to 3.0 in order to keep the value of the important

parameter (1 - C2)/C1 within acceptable limits. The resulting model gave the correct results for a

wide variety of complex shear flows including swirling jets, while its performance in benchmark ho-

mogeneous and inhomogeneous turbulent flows remained comparable to that of the original model.

However, one adverse consequence of moving C1 farther away from unity is the increased reliance

on the model for wall-reflection effects to obtain the correct relative Reynolds-stress levels in the

equilibrium near-wall layer (see Abid and Speziale 1993). C_ and C'2 (the coefficients associated

with the wall-reflection model) were therefore increased to 0.75 and 0.5 from their original values

of 0.5 and 0.3, respectively. This practice of giving more prominence to the wall-reflection model

seems to run counter to recent developments in the field which have led to the abandonment of

this model altogether in the calculation of wall-bounded flows. Finally, in a variation on Younis'

(1984) coordinate-dependent treatment discussed above, Fu, Launder and Leschziner (1987) pro-

posed pressure-scrambling the entire convection terms and not just their non-gradient elements

thus giving rise to the implausible implication that the fluctuating pressure field is modified, to

first order, by the transport of _ by the mean flow. Recently, this model has been the subject

of detailed analysis (Younis, Speziale and Gatski 1994) where it was shown to amount to no more

than the original LRR2 formulation but with the mean-strain part omitted altogether and Rotta's

coefficient C1 increased to an unreasonably high value. The need to include the mean-strain part

in the model for the pressure-strain correlation is well documented, especially when the effects of

buoyancy and streamline curvature are to be properly modeled. It is therefore unlikely that this

model will prove adequate when such effects are present.

Since both pressure-strain models of Launder et al. (1975) are linear in the Reynolds stresses,

it seems worthwhile to investigate whether non-linear models would lead to improved predictions of

the swirling jet. Several such models have been proposed in the literature. Recent models include

that of Speziale, Sarkar and Gatski (1991) (hereafter SSG), which is quadratic in the Reynolds

stresses, and that of Fu, Launder and Tselepidakis (1987) which is cubic in the same terms. There

are no reported results with the latter model in any wall-bounded flow and since our interest is in

advancing a model which would ultimately be applicable to the confined swirling flows encountered

in practical applications, it seemed best to confine our attention to the quadratic model which

has already been been found to reproduce the correct behavior of a number of complex wall flows

without the use of empirical wall-reflection terms (Younis, Gatski and Speziale, 1994). The main

objective of this wor[then is to see whether the presence of the quadratic terms in the SSG model

provides the "major changes needed in modeling the mean-strain contribution tothe pressure strain

correlation" deemed necessary by Launder and Morse (1979) to resolve the swirling jet problem.

The paper also reports comparative predictions with both the LRR1 and LRR2 models and puts on

record the performance of the SSG model in two benchmark flows - namely, the two-dimensional

plane and axisymmetric jets without swift.
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2 THE TURBULENCE MODELS

The turbulence models employed in this study are based on the solution of differential transport

equations for the Reynolds-stress tensor uiuj of the form:

- |UiUk W-- + ujukUk Oxk ,, axk Oxk)

- 2u_OxkOxk) + p_Oxj + Oxi] (1)

In the above equation, Uk is the mean velocity, uk is the fluctuating velocity, p is the fluctuating

pressure, p is the density and u is the kinematic viscosity. An overbar denotes a time average.

Diffusion is assumed to be entirely due to the turbulent velocity fluctuations which are modeled

here by the Daly and Harlow (1970) gradient-transport hypothesis:

0 / k :Ou-;N'_
- oxk (21

In (2), k and e are the turbulent kinetic energy and its dissipation rate, respectively. The

coefficient Cs is assigned the value of 0.22, arrived at by Morse (1980) by computer optimization

carried out in conjunction with the LRR1 model. The sensitivity of the SSG model to the choice

of this value will be checked in the next section. Demuren and Sarkar (1993) obtained better

Reynolds-stress anisotropies at the center-line of a channel by using the diffusion model of Mellor

and Herring (1973), but experiences with the same model in free shear flows have not shown it to

be superior to the simpler Daly and Harlow proposal.

The pressure-strain models employed in this paper are:

LRR1 & LRR2 Models

_ij = -el_bij T e2ksij T e3k (bikSjk T bjkSik - 2bklSkl_ij) + C4k(bikWjk T bjkWik) (3)

where
4

LRR1 : C1 = 3.0, C2 = g, Ca = 1.75, C4 = 1.31

4
LRR2 : CI = 3.6, C2 = g, Ca = 1.20, C4 = 1.20

and bij, Sij and Wij are, respectively, the Reynolds-stress anisotropy, mean rate of strain and mean

vorticity tensors defined as:

bij - uiuj 1 _ij
uquq 3



SSG Model

where

[ 1 \

_,j -- -(Cle + C_)bij + C2e _bikbkj - "_bktbklbij) + (Ca - C_II_ )kSij (4)

2
+C4k (bikSjk + bjkSik - "_bktSkl$ij) + Csk(bikWjk + bjkWik)

C1 = 3.4, C_ = 1.80, (72 = 4.2

4

Ca = _, C; = 1.30, (74 = 1.25

_OUi
Cs = 0.40, lib = bijbij, 7_ = -uiuj'x----

axj

The SSG model was formulated using a dynamical systems approach; it is topologically the

generic form of the commonly used hierarchy of pressure-strain models for two dimensional mean

turbulent flows that are homogeneous and in equilibrium. There are three main features that

distinguish it from the LRR models: (a) the presence of a quadratic slow term (with coefficient

C2), (b) a production-based rapid term that supplements the linear part of the slow pressure strain

(with coefficient C_) and (c) a variable isotropic rapid term (with coefficient C_). It should also be

mentioned that the SSG model was optimized for the description of homogeneous turbulent flows

that have combinations of rotational and irrotational strains with the result that it outperforms

the LRR models in rotating homogeneous shear flow (Speziale, Sarkar and Gatski 1991). There

is, of course, a strong analogy between flows with a system rotation and those with swirl and this

suggests that the effects of the latter may well be better represented by the SSG model.

Closure of the uiuj equation is completed with the assumption that the dissipation is isotropic

at high turbulence Reynolds numbers with the turbulent dissipation rate e (where eij = 32-e$ij)

obtained from the solution of the standard model equation:

Oe 0 / k Oe \ e e2

V' ozj - 0,_ (,C° 7"--N_) + C_,-_' - C_,-; (5)

The coefficients of this equation depend on the model used and are here assigned the values

recommended by their originators (see Table 1).

The modeled turbulence equations were transformed into cylindrical-polar coordinates and

solved simultaneously with the mean continuity and momentum equations using a standard, finite-

volume numerical method for boundary-layer flows. In this procedure, the solution is started from

assumed or, if available, measured initial conditions and then advanced step by step in the predom-

inant direction of the flow. A number of iterations were performed at each streamwise location to



Model C_, C_ 2 Ce

LRR1 1.44 1.90 0.15

LRR2 1.45 1.90 0.18

SSG 1.44 1.83 0.183

Table 1: Coefficients of the _ - equation

facilitate coupling of the velocity and pressure fields. It should be mentioned that the radial velocity

was obtained by integration of the continuity equation while the pressure gradients were obtained

by integration of the radial momentum equation. The shear-stress components _ and v-qr were

solved at grid locations displaced by half a cell from those of the mean velocities. This was done

to prevent uncoupling of the velocity and turbulence fields. At the free stream all the dependent

variables were set equal to zero; at the axis of symmetry the radial gradients of streamwise velocity

and the normal stresses were set equal to zero while the transverse velocity and the shear stresses

were themselves set equal to zero.

3 COMPARISONS WITH MEASUREMENTS

We apply the models first to the two-dimensional plane and axisymmetric jets (see Figure

l) discharged into stagnant surroundings. The calculations were started at the nozzle exit with

assumed profiles and continued until the computed solutions ceased to change with downstream

distance. The computational grid which expanded to match the growth of the shear layer consisted

of 34 nodes in the cross-stream direction. The forward step was limited to 1% of the local shear-

layer half-width (defined as the point where the velocity falls to half of its centerline value). The

predicted and measured plane jet spreading rates are compared in Table 2. There is considerable

scatter in the measured and computed values alike due, for the most part, to the non-attainment of

self-preservation or to insufficient grid resolution (Launder and Morse used a forward step of 5 % of

the local half-width and attributed the difference with the Launder et al. (1975) result to the "larger

forward steps" taken in the latter). The predicted and measured mean and turbulence profiles are

compared in Figure 2. Overall, the SSG model appears to underestimate the measured turbulent

stresses which is consistent with the low spreading rate obtained with this model. The reason for

this result can clearly be seen from an inspection of the term -C_Pbij which has no counterpart in

the LRR models. This term, while fairly uninfluential for the normal stresses, makes a large and

negative contribution to the shear stress equation leading to the reduction of this quantity across the

shear layer. A drop in the level of the shear stress reduces the rate of production of turbulent kinetic



Measurements

LRR1

LRR2

SSG

IGutmmrk (1970); IPatel

0.1021 , 0.1032'3 , 0.114

0.122 (present), 0.1165 , 0.1236

0.108 (present), 0.116 5

0.092

(197o); SRobins (1971); 4Haskestad (1965);
SLaunder et al. (1975); eLaunder and Morse (1979)

Table 2: Predicted and measured plane-jet spreading rates

energy and this in turn lowers the normal Reynolds stresses, either directly through the production

term of u 2 or indirectly through reduced transfer of energy via the pressure-strain correlation. It is

nevertheless quite encouraging to see that the SSG model yields results that are comparable with

the data considering that they were not used in its calibration. The model reproduces the observed

turbulence anisotropy on the jet's axis and, in particular, correctly predicts w 2 to be higher than

v 2 in contrast with LRR2 which predicts them to be equal.

Following Launder and Morse, we checked the sensitivity of the SSG model to C8 by repeating

the calculations with this coefficient reduced by 10% of its original value. The effects of this change

are to improve the prediction of the spreading rate by about 3% to 0.0946 but only at the expense

of causing the turbulent stress profiles to decay much faster to their free-stream levels. Reducing

C, by a similar amount increases the spreading rate by a mere 0.3 %. These results are very similar

to the percentage responses obtained by Launder and Morse and are taken here to mean that the

model's performance cannot be significantly improved by fine-tuning the coefficient of the Duly and

Harlow model.

Attention is next turned to the axisymmetric jet whose predicted and measured spreading rates

are compared in Table 3. All the models overestimate this quantity by quite a margin, though

the mechanism Which has led to the SSG model's underprediction of the plane-jet value is seen

here to bring about a closer agreement with the data. The improved agreement is, of course, quite

fortuitous but it lends support to the belief that the plane jet/round jet anomaly is not resolvable

by further refinement of the pressure-strain model. The SSG model's results for the mean and

turbulent profiles, shown in Figure 3, are broadly the same as the two LRR models.

It has already been mentioned that the plane and axisymmetric jets have not been used in

calibrating the coefficients of the SSG model. That was done solely by reference to simple homoge-

6
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Measurements

LRR1

LRR2

SSG

0.145 (present), 0.1353 , 0.1484

0.121

0.112

IRodi (1972); 2Hussein et al. (1994); 3Launder and Morse (1979)
4Musonge (1983)

Table 3: Predicted and measured axisymmetric-jet spreading rates

neous shear flow and to grid turbulence. This contrasts with the approach of Launder et al. (1975)

and Gibson and Younis (1986) who took the fundamental flows to provide only a rough guide to

the coefficients which were then refined by computer optimization involving a wide range of flows

including the plane and axisymmetric free jets.

Attention is turned next to the swirling axisymmetric jet studied experimentally by Morse

(1980). This experiment remains the best documented test case for this flow and has recently

formed part of the benchmark flows chosen for turbulence-model assessments (Bradshaw et al.

1994). The experiments were performed for two values of the Swirl Number, while the comparisons

made here are for the greater of the two (S=0.40) which demonstrated the best internal consistency

and where the effects of swirl are most pronounced. The present calculations were started from x/D

= 0.5, using the measured mean-velocity and turbulence profiles at this first transverse position.

The starting profile for s was deduced by inversion of the usual eddy-viscosity relation following

the practice of Launder and Morse and of Gibson and Younis (1986). The computations were

performed on a grid consisting of 34 cross-stream nodes with a forward step limited to 2.0 % of the

local half width.

We reverse the usual order for presentation of the computed results by starting with the tur-

bulent stresses and in particular the component _-_ obtained by Launder and Morse to be of the

wrong sign. Figure 4 compares the predicted and measured profiles of this quantity. The profiles

obtained with the LRR1 model correspond very closely to those reported by Launder and Morse

using the same model. This is very gratifying considering that very different codes were used and

bearing in mind the scatter observed in the prediction of non-swirling flows. The quadratic model

suffers the same problem as the two linear ones in producing negative values in the region close

to the axis (r/x < 0.1); however, it is then found to recover, producing positive stress values in



the outer parts. In contrast, the linear models predict this quantity to be largely zero (LRR2)

or negative (LRR1) throughout the flow. This is a very important result as it will determine the

subsequent development of the flow. Its causes can be traced to the form of the pressure-strain

mbdels which for _ are reproduced below:

OU aW W

(¢ )Lnnl =-3.0 b,3 + 1.53b -b7 + 1.53b,2-- j- 0.22b, --

Negative in the outer layer (W > W,,,)

+

4.2{(b_,÷ b_)b,3 ÷ b,_b_3}_

It should first be pointed out that at the starting station, x/D=0.5, _ was obtained to be

negative in the inner layer and positive in the outer layer in between the maximum tangential

velocity and free stream. Focusing attention on the outer layer where the differences between the

various models are largest, it is immediately clear that all terms in the LRR1 model act as sinks

for uw which consequently becomes negative (note that only a small part of this component's

production rate is positive). In the SSG model, the terms that are counterparts to LRR1 are

also always negative, but to a smaller extent as can be seen from the values of the multiplying

coefficients. However, the quadratic terms are positive in the outer layer and it is those that are

responsible for maintaining uw positive in the outer layer.

The consequences of this result on the development of the swirling jet cannot be understated.

This can be seen in Figure 5 where the measurements and predictions of _ are compared. The

presence of the term 2 _ W/r in the _-_ transport equation accounts for the differences between

the model predictions. A higher value of _-_ is associated with a more rapid expansion of the shear

layer and, from continuity, to a faster decay of velocity. Note that the differences between the

LRR models and the SSG model are greatest at the early stages of the jet development where the

effects of swirl are most pronounced. Downstream, where uw will have decayed to about 10 % of

its initial value, the LRR models predict higher _ levels - a consequence of their overestimating

this quantity in the non-swirling case (Figure 3).

In Figure 6 it can be seen that the shear-stress component _-W which is responsible for the radial

diffusion of tangential momentum is also better predicted by the SSG model, particularly at the

early stages of development. The predicted and measured normal stresses are compared in Figures
7-9. The behavior of those quantities and the relative performance of the different models can be

explained by the appearance in their transport equations of the shear-stress components already

presented. Thus, for example, the higher levels obtained for u s by the SSG model are due to the

higher values obtained for _-_ which enters into its production.
The predicted and measured profiles of the axial and tangential mean velocities are compared

in Figures 10and 11. The shapes Of the predicted profiles are determined by the distributions of _-Y

:_F1- I-



and _ with the fuller profiles obtained using the SSG model corresponding to the higher values of

the turbulent shear stresses obtained with that model. Final]y, the predicted and measured decay

of the maximum axial and tangential velocities in the streamwise direction are compared in Figure

12. Also plotted there are the computed and measured development of the jet's half width. This

parameter is of primary practical interest and is perhaps the most sensitive measure of a model's

suitability for swirling-flow calculations. Only the SSG model manages to capture the observed

rapid growth of this quantity in the initial region where the effects of swirl are most pronounced.

That this should be the case follows from the fact that higher values of _-v were produced as a result

of the quadratic model's better prediction of the sign and magnitude of _--_. The linear models

eventually produce a jet half-width value comparable to that measured - but that only occurs far

downstream from the nozzle exit, where the importance of swirl has diminished, and the models'

tendency to overestimate the spreading rate of the non-swirling jet (see Table 3) comes into play.

4 CONCLUSIONS

The performance of the SSG model was tested in the benchmark plane and axisymmetric free

jets without swirl, given that neither flow entered into the calibration of the model. Results that

were on balance comparable to those of the linear LRR models were obtained. While the SSG

model underpredicts the spreading rate of the plane jet by 12%, it overpredicts the axisymmetric

value by only 19%: an improvement on the linear models where the overprediction is 30% or more.

The results for the swirling jet obtained from the SSG model constitute a substantial improvement

over those obtained with the linear LRR models. Most notably, the shear stress component uw was

found to have generally the correct sign resulting in better overall predictions, especially for the

growth rate of the swirling jet. This is in sharp contrast to the linear models which predict lower

growth rates, with the differences between the two modeling approaches attributed directly to the

contribution made by the quadratic slow term in the SSG pressure-strain model. It is interesting

to note that the same quadratic term has recently been shown by So et ai. (1994) to be essential

for the correct prediction of the von Karman constant in flat-plate boundary layer flows when

integration of the model is carried out through the viscous sublayer directly to the wall. It is likely

that these terms will also improve the prediction of complex wall-bounded turbulent flows and,

therefore, testing of the SSG model in a number of such flows will be the subject of a future study.
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